--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-atco2-asr results: [] --- # whisper-base-atco2-asr This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9060 - Wer: 49.2883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9897 | 12.5 | 50 | 0.8748 | 70.4626 | | 0.0447 | 25.0 | 100 | 0.8519 | 52.0463 | | 0.0087 | 37.5 | 150 | 0.8772 | 39.2794 | | 0.0043 | 50.0 | 200 | 0.8891 | 39.3683 | | 0.0034 | 62.5 | 250 | 0.8976 | 49.4217 | | 0.0027 | 75.0 | 300 | 0.9022 | 49.1548 | | 0.0024 | 87.5 | 350 | 0.9050 | 49.2438 | | 0.0023 | 100.0 | 400 | 0.9060 | 49.2883 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.15.0 - Tokenizers 0.15.0