--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-atco2-asr-atcosim results: [] --- # whisper-large-v3-atco2-asr-atcosim This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1039 - Wer: 22.2698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 12644 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.049 | 1.97 | 250 | 0.0613 | 41.3521 | | 0.0168 | 3.94 | 500 | 0.0656 | 25.3775 | | 0.0076 | 5.91 | 750 | 0.0703 | 16.7505 | | 0.0028 | 7.87 | 1000 | 0.0722 | 23.0540 | | 0.001 | 9.84 | 1250 | 0.0727 | 21.6365 | | 0.0008 | 11.81 | 1500 | 0.0728 | 24.0815 | | 0.0012 | 13.78 | 1750 | 0.0712 | 36.9653 | | 0.0025 | 15.75 | 2000 | 0.0701 | 21.1248 | | 0.0005 | 17.72 | 2250 | 0.0745 | 10.2458 | | 0.0006 | 19.69 | 2500 | 0.0781 | 26.3169 | | 0.0013 | 21.65 | 2750 | 0.0760 | 15.4127 | | 0.0073 | 23.62 | 3000 | 0.0790 | 85.4764 | | 0.0038 | 25.59 | 3250 | 0.0724 | 44.4682 | | 0.0003 | 27.56 | 3500 | 0.0772 | 37.4056 | | 0.0003 | 29.53 | 3750 | 0.0778 | 31.2238 | | 0.0 | 31.5 | 4000 | 0.0806 | 22.4040 | | 0.0 | 33.46 | 4250 | 0.0831 | 20.6886 | | 0.0 | 35.43 | 4500 | 0.0847 | 20.3322 | | 0.0 | 37.4 | 4750 | 0.0860 | 20.7935 | | 0.0 | 39.37 | 5000 | 0.0871 | 20.3657 | | 0.0 | 41.34 | 5250 | 0.0880 | 20.5293 | | 0.0 | 43.31 | 5500 | 0.0889 | 20.7977 | | 0.0 | 45.28 | 5750 | 0.0898 | 20.4957 | | 0.0 | 47.24 | 6000 | 0.0906 | 20.9612 | | 0.0 | 49.21 | 6250 | 0.0914 | 20.8564 | | 0.0 | 51.18 | 6500 | 0.0921 | 21.1919 | | 0.0 | 53.15 | 6750 | 0.0928 | 20.7809 | | 0.0 | 55.12 | 7000 | 0.0934 | 21.1793 | | 0.0 | 57.09 | 7250 | 0.0941 | 21.2087 | | 0.0 | 59.06 | 7500 | 0.0947 | 21.2255 | | 0.0 | 61.02 | 7750 | 0.0953 | 21.4142 | | 0.0 | 62.99 | 8000 | 0.0959 | 21.1961 | | 0.0 | 64.96 | 8250 | 0.0966 | 21.1080 | | 0.0 | 66.93 | 8500 | 0.0972 | 21.0955 | | 0.0 | 68.9 | 8750 | 0.0978 | 21.4226 | | 0.0 | 70.87 | 9000 | 0.0983 | 21.3681 | | 0.0 | 72.83 | 9250 | 0.0988 | 21.6532 | | 0.0 | 74.8 | 9500 | 0.0994 | 21.6155 | | 0.0 | 76.77 | 9750 | 0.0999 | 21.5107 | | 0.0 | 78.74 | 10000 | 0.1005 | 21.3974 | | 0.0 | 80.71 | 10250 | 0.1010 | 21.6407 | | 0.0 | 82.68 | 10500 | 0.1014 | 21.7120 | | 0.0 | 84.65 | 10750 | 0.1019 | 21.8755 | | 0.0 | 86.61 | 11000 | 0.1023 | 21.9510 | | 0.0 | 88.58 | 11250 | 0.1027 | 21.9636 | | 0.0 | 90.55 | 11500 | 0.1030 | 22.0223 | | 0.0 | 92.52 | 11750 | 0.1033 | 22.0265 | | 0.0 | 94.49 | 12000 | 0.1036 | 22.3536 | | 0.0 | 96.46 | 12250 | 0.1038 | 22.3956 | | 0.0 | 98.43 | 12500 | 0.1039 | 22.2698 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.14.1