--- language: - spa license: apache-2.0 base_model: openai/whisper-small tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-spa results: [] --- # speaker-segmentation-fine-tuned-callhome-spa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.5174 - Der: 0.1732 - False Alarm: 0.0744 - Missed Detection: 0.0663 - Confusion: 0.0325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.6346 | 1.0 | 382 | 0.5316 | 0.1789 | 0.0670 | 0.0750 | 0.0369 | | 0.6117 | 2.0 | 764 | 0.5156 | 0.1724 | 0.0648 | 0.0766 | 0.0311 | | 0.6017 | 3.0 | 1146 | 0.5150 | 0.1747 | 0.0737 | 0.0680 | 0.0331 | | 0.6173 | 4.0 | 1528 | 0.5162 | 0.1737 | 0.0748 | 0.0663 | 0.0326 | | 0.5914 | 5.0 | 1910 | 0.5174 | 0.1732 | 0.0744 | 0.0663 | 0.0325 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1