--- language: de license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - de - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - robust-speech-event - mozilla-foundation/common_voice_6_0 model-index: - name: XLSR Wav2Vec2 German by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 12.06 - name: Test CER type: cer value: 2.92 - name: Test WER (+LM) type: wer value: 8.74 - name: Test CER (+LM) type: cer value: 2.28 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Dev WER type: wer value: 32.75 - name: Dev CER type: cer value: 13.64 - name: Dev WER (+LM) type: wer value: 26.60 - name: Dev CER (+LM) type: cer value: 12.58 --- # Wav2Vec2-Large-XLSR-53-German Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library: ```python from asrecognition import ASREngine asr = ASREngine("de", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-german") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = asr.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "de" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-german" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS. | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS | | ES KOMMT ZUM SHOWDOWN IN GSTAAD. | ES KOMMT ZUG STUNDEDAUTENESTERKT | | IHRE FOTOSTRECKEN ERSCHIENEN IN MODEMAGAZINEN WIE DER VOGUE, HARPER’S BAZAAR UND MARIE CLAIRE. | IHRE FOTELSTRECKEN ERSCHIENEN MIT MODEMAGAZINEN WIE DER VALG AT DAS BASIN MA RIQUAIR | | FELIPE HAT EINE AUCH FÜR MONARCHEN UNGEWÖHNLICH LANGE TITELLISTE. | FELIPPE HAT EINE AUCH FÜR MONACHEN UNGEWÖHNLICH LANGE TITELLISTE | | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET. | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET M | | WAS SOLLS, ICH BIN BEREIT. | WAS SOLL'S ICH BIN BEREIT | | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN, DIE MITEINANDER VERBUNDEN SIND. | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN DIE MITEINANDER VERBUNDEN SIND | | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM. | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM | | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND. | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND | | SIE WAR DIE COUSINE VON CARL MARIA VON WEBER. | SIE WAR DIE COUSINE VON KARL-MARIA VON WEBER | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset mozilla-foundation/common_voice_6_0 --config de --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-xlsr-53-german, title={XLSR Wav2Vec2 German by Jonatas Grosman}, author={Grosman, Jonatas}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german}}, year={2021} } ```