--- language: es license: apache-2.0 datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - es - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Spanish by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 8.82 - name: Test CER type: cer value: 2.58 - name: Test WER (+LM) type: wer value: 6.27 - name: Test CER (+LM) type: cer value: 2.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Dev WER type: wer value: 30.19 - name: Dev CER type: cer value: 13.56 - name: Dev WER (+LM) type: wer value: 24.71 - name: Dev CER (+LM) type: cer value: 12.61 --- # Fine-tuned XLSR-53 large model for speech recognition in Spanish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-spanish") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "es" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. | HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS | | OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. | OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN | | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN | | TRES | TRES | | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA | | EN LOS AÑOS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. | EN LOS AÑOS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES | | SE ESTÁ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. | SE ESTÓ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS | | SÍ | SÍ | | "FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESÓ." | FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESÓ | | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PÍOCOSUR | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-spanish, title={Fine-tuned {XLSR}-53 large model for speech recognition in {S}panish}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}}, year={2021} } ```