--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - arxiv_dataset metrics: - accuracy - precision - recall - f1 model-index: - name: baseline_BERT_50K_steps results: - task: name: Text Classification type: text-classification dataset: name: arxiv_dataset type: arxiv_dataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9936787420400056 - name: Precision type: precision value: 0.7967781908302355 - name: Recall type: recall value: 0.4734468476760239 - name: F1 type: f1 value: 0.5939610876970152 --- # baseline_BERT_50K_steps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the arxiv_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0192 - Accuracy: 0.9937 - Precision: 0.7968 - Recall: 0.4734 - F1: 0.5940 - Hamming: 0.0063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.0343 | 0.03 | 10000 | 0.0315 | 0.9912 | 0.7679 | 0.1370 | 0.2326 | 0.0088 | | 0.0244 | 0.06 | 20000 | 0.0234 | 0.9925 | 0.7813 | 0.3262 | 0.4602 | 0.0075 | | 0.0219 | 0.09 | 30000 | 0.0210 | 0.9931 | 0.7572 | 0.4320 | 0.5502 | 0.0069 | | 0.0204 | 0.12 | 40000 | 0.0197 | 0.9935 | 0.7738 | 0.4711 | 0.5857 | 0.0065 | | 0.0197 | 0.15 | 50000 | 0.0192 | 0.9937 | 0.7968 | 0.4734 | 0.5940 | 0.0063 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.12.1+cu113 - Datasets 2.16.1 - Tokenizers 0.15.1