--- license: other tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: mobilevit-small-finetuned results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.787 --- # mobilevit-small-finetuned This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.6787 - Accuracy: 0.787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.357 | 1.0 | 351 | 1.0780 | 0.6832 | | 1.068 | 2.0 | 703 | 0.7430 | 0.7722 | | 1.0103 | 2.99 | 1053 | 0.6787 | 0.787 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3