--- license: apache-2.0 base_model: distilbert-base-uncased tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: platzi-distilbert-model-similaritytexts-JorgeEnciso results: - task: name: Text Classification type: text-classification dataset: name: datasetX type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7083333333333334 - name: F1 type: f1 value: 0.8125984251968503 --- # platzi-distilbert-model-similaritytexts-JorgeEnciso This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.5871 - Accuracy: 0.7083 - F1: 0.8126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6336 | 1.09 | 500 | 0.6239 | 0.6838 | 0.8122 | | 0.6337 | 2.18 | 1000 | 0.6223 | 0.6912 | 0.8158 | | 0.6076 | 3.27 | 1500 | 0.5871 | 0.7083 | 0.8126 | | 0.5585 | 4.36 | 2000 | 0.6390 | 0.6887 | 0.7776 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3