--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-common_voice-tr-demo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: COMMON_VOICE - TR type: common_voice config: tr split: test args: 'Config: tr, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 0.35113880093963845 --- # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3920 - Wer: 0.3511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.92 | 100 | 3.5898 | 1.0 | | No log | 1.83 | 200 | 3.0073 | 0.9999 | | No log | 2.75 | 300 | 0.9230 | 0.7813 | | No log | 3.67 | 400 | 0.5698 | 0.6135 | | 3.1746 | 4.59 | 500 | 0.5274 | 0.5653 | | 3.1746 | 5.5 | 600 | 0.4778 | 0.5123 | | 3.1746 | 6.42 | 700 | 0.4359 | 0.4725 | | 3.1746 | 7.34 | 800 | 0.4289 | 0.4485 | | 3.1746 | 8.26 | 900 | 0.4121 | 0.4288 | | 0.2282 | 9.17 | 1000 | 0.4249 | 0.4034 | | 0.2282 | 10.09 | 1100 | 0.4106 | 0.3976 | | 0.2282 | 11.01 | 1200 | 0.4099 | 0.3935 | | 0.2282 | 11.93 | 1300 | 0.3970 | 0.3771 | | 0.2282 | 12.84 | 1400 | 0.4037 | 0.3726 | | 0.1043 | 13.76 | 1500 | 0.3953 | 0.3636 | | 0.1043 | 14.68 | 1600 | 0.3917 | 0.3532 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2