--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - cognitivecomputations/TinyDolphin-2.8.1-1.1b - cognitivecomputations/TinyDolphin-2.8.1-1.1b - cognitivecomputations/TinyDolphin-2.8.1-1.1b base_model: - cognitivecomputations/TinyDolphin-2.8.1-1.1b - cognitivecomputations/TinyDolphin-2.8.1-1.1b - cognitivecomputations/TinyDolphin-2.8.1-1.1b --- # TinyDolphin-3x-MoE TinyDolphin-3x-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) * [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) * [cognitivecomputations/TinyDolphin-2.8.1-1.1b](https://huggingface.co/cognitivecomputations/TinyDolphin-2.8.1-1.1b) ## 🧩 Configuration ```yaml base_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b gate_mode: hidden dtype: float16 experts: - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b positive_prompts: - "think step-by-step and follow these instructions" - "read the following passage, and summarize it in less than 30 words." - "please answer this question, consider the options carefully, and return the most likely answer." - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b positive_prompts: ["produce python code"] - source_model: cognitivecomputations/TinyDolphin-2.8.1-1.1b positive_prompts: ["What is 2 x 22?"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "jtatman/TinyDolphin-3x-MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```