--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: distilbert-base-cased model-index: - name: distilbert-bpmn results: [] --- # distilbert-bpmn This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3311 - Precision: 0.7852 - Recall: 0.8375 - F1: 0.8105 - Accuracy: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.0392 | 1.0 | 12 | 1.5999 | 0.2162 | 0.2333 | 0.2244 | 0.5017 | | 1.3439 | 2.0 | 24 | 1.0197 | 0.3786 | 0.4875 | 0.4262 | 0.7133 | | 0.8403 | 3.0 | 36 | 0.6398 | 0.5664 | 0.675 | 0.6160 | 0.8333 | | 0.4941 | 4.0 | 48 | 0.4637 | 0.6775 | 0.7792 | 0.7248 | 0.8765 | | 0.3227 | 5.0 | 60 | 0.3701 | 0.7262 | 0.7958 | 0.7594 | 0.9041 | | 0.2206 | 6.0 | 72 | 0.3286 | 0.75 | 0.8125 | 0.78 | 0.9231 | | 0.1762 | 7.0 | 84 | 0.3330 | 0.7597 | 0.8167 | 0.7871 | 0.9180 | | 0.1261 | 8.0 | 96 | 0.3159 | 0.7952 | 0.825 | 0.8098 | 0.9266 | | 0.1121 | 9.0 | 108 | 0.3205 | 0.7860 | 0.8417 | 0.8129 | 0.9275 | | 0.0902 | 10.0 | 120 | 0.3090 | 0.8071 | 0.8542 | 0.8300 | 0.9326 | | 0.08 | 11.0 | 132 | 0.3200 | 0.7821 | 0.8375 | 0.8089 | 0.9266 | | 0.0789 | 12.0 | 144 | 0.3226 | 0.7915 | 0.8542 | 0.8216 | 0.9283 | | 0.0654 | 13.0 | 156 | 0.3311 | 0.7852 | 0.8375 | 0.8105 | 0.9275 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2