--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: juancopi81/whisper-medium-es results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - name: Wer type: wer value: 5.945636921157944 --- # juancopi81/whisper-medium-es This model is a fine-tuned version of [juancopi81/whisper-medium-es](https://huggingface.co/juancopi81/whisper-medium-es) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1893 - Wer: 5.9456 Using the script provided in the Whisper Sprint (Dec. 2022) the models achieves these results on the evaluation sets (WER): - google/fleurs: 7.02 - mozilla-foundation/common_voice_11_0: XXXX ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.244 | 1.01 | 1000 | 0.1848 | 6.4894 | | 0.0714 | 2.02 | 2000 | 0.1805 | 5.9528 | | 0.0285 | 3.03 | 3000 | 0.1893 | 5.9456 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2