--- license: apache-2.0 base_model: BSC-TeMU/roberta-base-bne tags: - generated_from_trainer datasets: - multilingual-sentiments metrics: - accuracy model-index: - name: roberta-base-bne-finetuned-multi-sentiment results: - task: name: Text Classification type: text-classification dataset: name: multilingual-sentiments type: multilingual-sentiments config: spanish split: validation args: spanish metrics: - name: Accuracy type: accuracy value: 0.7222222222222222 --- # roberta-base-bne-finetuned-multi-sentiment This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the multilingual-sentiments dataset. It achieves the following results on the evaluation set: - Loss: 0.7635 - Accuracy: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6192 | 1.0 | 115 | 0.6712 | 0.7099 | | 0.217 | 2.0 | 230 | 0.7635 | 0.7222 | ### Framework versions - Transformers 4.35.0 - Pytorch 1.13.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1