--- base_model: openai/whisper-small library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper-squeezeformer-v3 results: [] --- # Whisper-squeezeformer-v3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1511 - Wer: 6.8035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 20 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2500 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.8718 | 1.0 | 2500 | 3.8609 | 111.8590 | | 2.5628 | 2.0 | 5000 | 0.2978 | 15.6193 | | 0.1698 | 3.0 | 7500 | 0.2218 | 11.0906 | | 0.0867 | 4.0 | 10000 | 0.2011 | 10.1891 | | 0.1697 | 5.0 | 12500 | 0.1641 | 8.9851 | | 0.0993 | 6.0 | 15000 | 0.1553 | 7.8039 | | 0.0651 | 7.0 | 17500 | 0.1555 | 7.2448 | | 0.0468 | 8.0 | 20000 | 0.1569 | 7.1497 | | 0.2168 | 9.0 | 22500 | 0.1509 | 7.0507 | | 0.1467 | 10.0 | 25000 | 0.1494 | 6.9671 | | 0.1113 | 11.0 | 27500 | 0.1493 | 6.7597 | | 0.0914 | 12.0 | 30000 | 0.1511 | 6.8035 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0