--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards license: mit language: - cs --- # Model Card for robeczech-binary-online-risks-cs This model is fine-tuned for binary text classification of Online Risks in Instant Messenger dialogs of Adolescents in Czech. ## Model Description The model was fine-tuned on a dataset of Czech Instant Messenger dialogs of Adolescents. The classification is binary and the model outputs probablities for labels {0,1}: Online Risks present or not. - **Developed by:** Anonymous - **Language(s):** cs - **Finetuned from:** ufal/robeczech-base ## Model Sources - **Repository:** https://github.com/justtherightsize/supportive-interactions-and-risks - **Paper:** Stay tuned! ## Usage Here is how to use this model to classify a context-window of a dialogue: ```python import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Prepare input texts. This model is fine-tuned for Czech test_texts = ['Utterance1;Utterance2;Utterance3'] # Load the model and tokenizer model = AutoModelForSequenceClassification.from_pretrained( 'justtherightsize/robeczech-binary-online-risks-cs', num_labels=2).to("cuda") tokenizer = AutoTokenizer.from_pretrained( 'justtherightsize/robeczech-binary-online-risks-cs', use_fast=False, truncation_side='left') assert tokenizer.truncation_side == 'left' # Define helper functions def get_probs(text, tokenizer, model): inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors="pt").to("cuda") outputs = model(**inputs) return outputs[0].softmax(1) def preds2class(probs, threshold=0.5): pclasses = np.zeros(probs.shape) pclasses[np.where(probs >= threshold)] = 1 return pclasses.argmax(-1) def print_predictions(texts): probabilities = [get_probs( texts[i], tokenizer, model).cpu().detach().numpy()[0] for i in range(len(texts))] predicted_classes = preds2class(np.array(probabilities)) for c, p in zip(predicted_classes, probabilities): print(f'{c}: {p}') # Run the prediction print_predictions(test_texts) ```