--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards license: mit language: - cs --- # Model Card for small-e-czech-multi-label-supportive-interactions-cs This model is fine-tuned for multi-label text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents. ## Model Description The model was fine-tuned on a dataset of Instant Messenger dialogs of Adolescents. The classification is multi-label and the model outputs probablities for labels {0,1,2,3,4,5}: 0. None 1. Informational Support 2. Emotional Support 3. Social Companionship 4. Appraisal 5. Instrumental Support - **Developed by:** Anonymous - **Language(s):** cs - **Finetuned from:** small-e-czech ## Model Sources - **Repository:** https://github.com/justtherightsize/supportive-interactions-and-risks - **Paper:** Stay tuned! ## Usage Here is how to use this model to classify a context-window of a dialogue: ```python import numpy as np import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Prepare input texts. This model is pretrained on multi-lingual data # and fine-tuned on English test_texts = ['Utterance1;Utterance2;Utterance3'] # Load the model and tokenizer model = AutoModelForSequenceClassification.from_pretrained( 'justtherightsize/small-e-czech-multi-label-supportive-interactions-cs', num_labels=6).to("cuda") tokenizer = AutoTokenizer.from_pretrained( 'justtherightsize/small-e-czech-multi-label-supportive-interactions-cs', use_fast=False, truncation_side='left') assert tokenizer.truncation_side == 'left' # Define helper functions def predict_one(text: str, tok, mod, threshold=0.5): encoding = tok(text, return_tensors="pt", truncation=True, padding=True, max_length=256) encoding = {k: v.to(mod.device) for k, v in encoding.items()} outputs = mod(**encoding) logits = outputs.logits sigmoid = torch.nn.Sigmoid() probs = sigmoid(logits.squeeze().cpu()) predictions = np.zeros(probs.shape) predictions[np.where(probs >= threshold)] = 1 return predictions, probs def print_predictions(texts): preds = [predict_one(tt, tokenizer, model) for tt in texts] for c, p in preds: print(f'{c}: {p.tolist():.4f}') # Run the prediction print_predictions(test_texts) ```