--- license: gpl-3.0 tags: - object-detection - computer-vision - sort - tracker - osnet --- <div align="center"> <h1> Torchreid-Pip: Packaged version of Torchreid </h1> <h4> <img width="700" alt="teaser" src="https://raw.githubusercontent.com/goksenin-uav/torchreid-pip/main/doc/logo.png"> </h4> </div> This repo is a packaged version of the [Torchreid](https://github.com/KaiyangZhou/deep-person-reid) algorithm. ### Installation ``` pip install torchreid ``` ### Model Description [Learning Generalisable Omni-Scale Representations for Person Re-Identification](https://arxiv.org/abs/1905.00953): [Omni-Scale Feature Learning for Person Re-Identification](https://arxiv.org/abs/1910.06827) [Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch](https://arxiv.org/abs/1910.10093) ### Overview ##### 1. Import ``torchreid`` ```python import torchreid ``` ##### 2. Load data manager ```python datamanager = torchreid.data.ImageDataManager( root="reid-data", sources="market1501", targets="market1501", height=256, width=128, batch_size_train=32, batch_size_test=100, transforms=["random_flip", "random_crop"] ) ``` ##### 3 Build model, optimizer and lr_scheduler ```python model = torchreid.models.build_model( name="resnet50", num_classes=datamanager.num_train_pids, loss="softmax", pretrained=True ) model = model.cuda() optimizer = torchreid.optim.build_optimizer( model, optim="adam", lr=0.0003 ) scheduler = torchreid.optim.build_lr_scheduler( optimizer, lr_scheduler="single_step", stepsize=20 ) ``` ##### 4. Build engine ```python engine = torchreid.engine.ImageSoftmaxEngine( datamanager, model, optimizer=optimizer, scheduler=scheduler, label_smooth=True ) ``` ##### 5. Run training and test ```python engine.run( save_dir="log/resnet50", max_epoch=60, eval_freq=10, print_freq=10, test_only=False ) ``` Citation --------- If you use this code or the models in your research, please give credit to the following papers: ```bibtex @article{torchreid, title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch}, author={Zhou, Kaiyang and Xiang, Tao}, journal={arXiv preprint arXiv:1910.10093}, year={2019} } @inproceedings{zhou2019osnet, title={Omni-Scale Feature Learning for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, booktitle={ICCV}, year={2019} } @article{zhou2021osnet, title={Learning Generalisable Omni-Scale Representations for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, journal={TPAMI}, year={2021} } ```