--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-ner-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9438052359513089 - name: Recall type: recall value: 0.9525412319084483 - name: F1 type: f1 value: 0.9481531116508919 - name: Accuracy type: accuracy value: 0.9910634321093416 - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test metrics: - name: Accuracy type: accuracy value: 0.9116307653519484 verified: true - name: Precision type: precision value: 0.9366103911345081 verified: true - name: Recall type: recall value: 0.9262526113340186 verified: true - name: F1 type: f1 value: 0.9314027058794109 verified: true - name: loss type: loss value: 0.4366346299648285 verified: true --- # bert-base-cased-ner-conll2003 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0355 - Precision: 0.9438 - Recall: 0.9525 - F1: 0.9482 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.1.0 - Tokenizers 0.12.1