--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callfriend model-index: - name: speaker-segmentation-fine-tuned-callfriend-jpn results: [] --- # speaker-segmentation-fine-tuned-callfriend-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callfriend jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.6570 - Der: 0.2815 - False Alarm: 0.1035 - Missed Detection: 0.1082 - Confusion: 0.0698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.6836 | 1.0 | 237 | 0.6465 | 0.2865 | 0.1045 | 0.1095 | 0.0724 | | 0.6265 | 2.0 | 474 | 0.6455 | 0.2772 | 0.1023 | 0.1062 | 0.0687 | | 0.6199 | 3.0 | 711 | 0.6615 | 0.2879 | 0.0950 | 0.1161 | 0.0768 | | 0.6007 | 4.0 | 948 | 0.6574 | 0.2823 | 0.1051 | 0.1066 | 0.0705 | | 0.5979 | 5.0 | 1185 | 0.6570 | 0.2815 | 0.1035 | 0.1082 | 0.0698 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1