--- base_model: slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.8 datasets: - slm-research-vn/dpo-format-function-calling-v4 - slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 - argilla/dpo-mix-7k library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer model-index: - name: Qwen2-7B-Instruct-SPPO-Function-call-v2.12 results: [] --- # Qwen2-7B-Instruct-SPPO-Function-call-v2.12 This model is a fine-tuned version of [slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.8](https://huggingface.co/slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.8) on the slm-research-vn/dpo-format-function-calling-v4, the slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 and the argilla/dpo-mix-7k datasets. It achieves the following results on the evaluation set: - Loss: 0.3322 - Rewards/chosen: 0.5523 - Rewards/rejected: -0.7005 - Rewards/accuracies: 0.9017 - Rewards/margins: 1.2528 - Logps/rejected: -278.7327 - Logps/chosen: -129.0717 - Logits/rejected: -0.5984 - Logits/chosen: -0.7738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6806 | 0.0916 | 100 | 0.6816 | 0.0303 | 0.0099 | 0.6445 | 0.0205 | -264.5260 | -139.5110 | -0.5879 | -0.7638 | | 0.5704 | 0.1832 | 200 | 0.5993 | 0.3495 | 0.1473 | 0.8237 | 0.2023 | -261.7780 | -133.1277 | -0.5881 | -0.7638 | | 0.5032 | 0.2749 | 300 | 0.5313 | 0.5795 | 0.1792 | 0.8526 | 0.4003 | -261.1383 | -128.5271 | -0.5893 | -0.7651 | | 0.4548 | 0.3665 | 400 | 0.4727 | 0.6406 | 0.0523 | 0.8844 | 0.5884 | -263.6780 | -127.3051 | -0.5901 | -0.7660 | | 0.3823 | 0.4581 | 500 | 0.4235 | 0.6412 | -0.1314 | 0.8931 | 0.7726 | -267.3507 | -127.2934 | -0.5914 | -0.7672 | | 0.3513 | 0.5497 | 600 | 0.3843 | 0.6087 | -0.3415 | 0.9133 | 0.9502 | -271.5532 | -127.9448 | -0.5936 | -0.7693 | | 0.3444 | 0.6413 | 700 | 0.3571 | 0.5871 | -0.5028 | 0.9104 | 1.0898 | -274.7784 | -128.3763 | -0.5965 | -0.7721 | | 0.3486 | 0.7329 | 800 | 0.3427 | 0.5681 | -0.6155 | 0.9104 | 1.1836 | -277.0341 | -128.7559 | -0.5971 | -0.7725 | | 0.3317 | 0.8246 | 900 | 0.3349 | 0.5586 | -0.6739 | 0.9133 | 1.2326 | -278.2013 | -128.9451 | -0.5993 | -0.7748 | | 0.3077 | 0.9162 | 1000 | 0.3328 | 0.5530 | -0.6974 | 0.9075 | 1.2504 | -278.6715 | -129.0585 | -0.5998 | -0.7754 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1