--- language: - pa license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer base_model: Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10 model-index: - name: wav2vec2-punjabi-V8-Abid results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice pa-IN type: mozilla-foundation/common_voice_8_0 args: pa-IN metrics: - type: wer value: 36.02 name: Test WER With LM - type: cer value: 12.81 name: Test CER With LM --- # wav2vec2-large-xlsr-53-punjabi This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2101 - Wer: 0.4939 - Cer: 0.2238 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 11.0563 | 3.7 | 100 | 1.9492 | 0.7123 | 0.3872 | | 1.6715 | 7.41 | 200 | 1.3142 | 0.6433 | 0.3086 | | 0.9117 | 11.11 | 300 | 1.2733 | 0.5657 | 0.2627 | | 0.666 | 14.81 | 400 | 1.2730 | 0.5598 | 0.2534 | | 0.4225 | 18.52 | 500 | 1.2548 | 0.5300 | 0.2399 | | 0.3209 | 22.22 | 600 | 1.2166 | 0.5229 | 0.2372 | | 0.2678 | 25.93 | 700 | 1.1795 | 0.5041 | 0.2276 | | 0.2088 | 29.63 | 800 | 1.2101 | 0.4939 | 0.2238 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0