--- language: - sk tags: - twitter - sentiment-analysis license: cc metrics: - f1 widget: - text: "Najkrajšia vianočná reklama: Toto milé video vám vykúzli čarovnú atmosféru: Vianoce sa nezadržateľne blížia." - text: "A opäť sa objavili nebezpečné výrobky. Pozrite sa, či ich nemáte doma" --- # Sentiment Analysis model based on SlovakBERT This is a sentiment analysis classifier based on [SlovakBERT](https://huggingface.co/gerulata/slovakbert). The model can distinguish three level of sentiment: - `-1` - Negative sentiment - `0` - Neutral sentiment - `1` - Positive setiment The model was fine-tuned using Slovak part of [Multilingual Twitter Sentiment Analysis Dataset](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155036) [Mozetič et al 2016] containing 50k manually annotated Slovak tweets. As such, it is fine-tuned for tweets and it is not advised to use the model for general-purpose sentiment analysis. ## Results The model was evaluated in [our paper](https://arxiv.org/abs/2109.15254) [Pikuliak et al 2021, Section 4.4]. It achieves \\(0.67\\) F1-score on the original dataset and \\(0.58\\) F1-score on general reviews dataset. ## Cite ``` @inproceedings{pikuliak-etal-2022-slovakbert, title = "{S}lovak{BERT}: {S}lovak Masked Language Model", author = "Pikuliak, Mat{\'u}{\v{s}} and Grivalsk{\'y}, {\v{S}}tefan and Kon{\^o}pka, Martin and Bl{\v{s}}t{\'a}k, Miroslav and Tamajka, Martin and Bachrat{\'y}, Viktor and Simko, Marian and Bal{\'a}{\v{z}}ik, Pavol and Trnka, Michal and Uhl{\'a}rik, Filip", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-emnlp.530", pages = "7156--7168", abstract = "We introduce a new Slovak masked language model called \textit{SlovakBERT}. This is to our best knowledge the first paper discussing Slovak transformers-based language models. We evaluate our model on several NLP tasks and achieve state-of-the-art results. This evaluation is likewise the first attempt to establish a benchmark for Slovak language models. We publish the masked language model, as well as the fine-tuned models for part-of-speech tagging, sentiment analysis and semantic textual similarity.", } ```