--- library_name: transformers language: - ne license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Whisper metrics: - wer model-index: - name: Whisper Large v3 Turbo Nepali - Kiran Pantha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR54 type: kiranpantha/OpenSLR54-Whisper config: default split: test args: 'config: ne, split: test' metrics: - name: Wer type: wer value: 23.63425925925926 --- # Whisper Large v3 Turbo Nepali - Kiran Pantha This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the OpenSLR54 dataset. It achieves the following results on the evaluation set: - Loss: 0.1707 - Wer: 23.6343 - Cer: 5.4903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:| | 0.3073 | 0.3597 | 300 | 0.2895 | 53.2870 | 13.5643 | | 0.2457 | 0.7194 | 600 | 0.2396 | 45.3704 | 11.6816 | | 0.166 | 1.0791 | 900 | 0.2062 | 37.9167 | 9.6668 | | 0.1477 | 1.4388 | 1200 | 0.1949 | 37.4306 | 9.3071 | | 0.1284 | 1.7986 | 1500 | 0.1680 | 32.6620 | 8.3235 | | 0.0745 | 2.1583 | 1800 | 0.1706 | 31.1574 | 7.5272 | | 0.0701 | 2.5180 | 2100 | 0.1661 | 32.0370 | 7.7217 | | 0.0777 | 2.8777 | 2400 | 0.1599 | 28.6111 | 7.1308 | | 0.0455 | 3.2374 | 2700 | 0.1723 | 28.7037 | 7.0097 | | 0.0375 | 3.5971 | 3000 | 0.1579 | 26.9444 | 6.3674 | | 0.0374 | 3.9568 | 3300 | 0.1639 | 26.8981 | 6.2794 | | 0.0171 | 4.3165 | 3600 | 0.1711 | 25.3241 | 6.2280 | | 0.0219 | 4.6763 | 3900 | 0.1638 | 25.0 | 5.9307 | | 0.0089 | 5.0360 | 4200 | 0.1635 | 24.5139 | 5.7435 | | 0.0072 | 5.3957 | 4500 | 0.1717 | 24.1898 | 5.5711 | | 0.0059 | 5.7554 | 4800 | 0.1707 | 23.6343 | 5.4903 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cxx11.abi - Datasets 3.2.0 - Tokenizers 0.20.3