--- license: other library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: kloodia/raw_physic type: oasst dataset_prepared_path: val_set_size: 0.05 output_dir: ./lora-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# lora-out This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.641 | 0.01 | 1 | 0.6417 | | 0.5093 | 0.25 | 42 | 0.5260 | | 0.4665 | 0.5 | 84 | 0.5118 | | 0.4431 | 0.75 | 126 | 0.5043 | | 0.4523 | 1.0 | 168 | 0.4985 | | 0.4237 | 1.23 | 210 | 0.4985 | | 0.4002 | 1.48 | 252 | 0.4976 | | 0.3656 | 1.73 | 294 | 0.4955 | | 0.3744 | 1.98 | 336 | 0.4942 | | 0.3278 | 2.21 | 378 | 0.5012 | | 0.344 | 2.46 | 420 | 0.5003 | | 0.3216 | 2.71 | 462 | 0.4984 | | 0.3371 | 2.96 | 504 | 0.4980 | | 0.3243 | 3.19 | 546 | 0.5051 | | 0.3184 | 3.44 | 588 | 0.5052 | | 0.313 | 3.69 | 630 | 0.5060 | | 0.3097 | 3.94 | 672 | 0.5060 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0