---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: lora-out
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kloodia/raw_physic
type: oasst
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
# lora-out
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.641 | 0.01 | 1 | 0.6417 |
| 0.5093 | 0.25 | 42 | 0.5260 |
| 0.4665 | 0.5 | 84 | 0.5118 |
| 0.4431 | 0.75 | 126 | 0.5043 |
| 0.4523 | 1.0 | 168 | 0.4985 |
| 0.4237 | 1.23 | 210 | 0.4985 |
| 0.4002 | 1.48 | 252 | 0.4976 |
| 0.3656 | 1.73 | 294 | 0.4955 |
| 0.3744 | 1.98 | 336 | 0.4942 |
| 0.3278 | 2.21 | 378 | 0.5012 |
| 0.344 | 2.46 | 420 | 0.5003 |
| 0.3216 | 2.71 | 462 | 0.4984 |
| 0.3371 | 2.96 | 504 | 0.4980 |
| 0.3243 | 3.19 | 546 | 0.5051 |
| 0.3184 | 3.44 | 588 | 0.5052 |
| 0.313 | 3.69 | 630 | 0.5060 |
| 0.3097 | 3.94 | 672 | 0.5060 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0