--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kmagai - **License:** apache-2.0 - **Finetuned from model:** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ## JSONL Output Process ### Model Inference Setup ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch from tqdm import tqdm import json # QLoRA config for 4-bit quantization bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token=HF_TOKEN ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN) ``` ### Input Data Processing The script reads input data from a JSONL file (`elyza-tasks-100-TV_0.jsonl`). Each line contains a JSON object with task information: ```python datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" ``` ### Generation Process For each input in the dataset: 1. Format the prompt with instruction template 2. Tokenize the input 3. Generate response using the model 4. Decode the output 5. Create result object with task_id and output ```python results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### Instruction {input} ### Response: """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2 )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) ``` ### Generation Parameters - `max_new_tokens=100`: Maximum number of tokens to generate - `do_sample=False`: Deterministic generation (same output every time) - `repetition_penalty=1.2`: Penalize repetition in generated text ### Output Format The generated responses are saved in a JSONL file with the following format: ```json {"task_id": "task_1", "input": "input text", "output": "generated response"} ``` Required fields: - `task_id`: Unique identifier for the task - `output`: Response generated by the model Optional fields: - `input`: Input text (can be omitted in submission) ## Training Data Format The training data should be provided in JSONL (JSON Lines) format, where each line represents a single JSON object containing the following fields: ```json { "instruction": "Task instruction text", "input": "Input text (optional)", "output": "Expected output text" } ``` ### Fields Description - `instruction`: Task instruction that tells the model what to do - `input`: (Optional) Input text that provides specific context for the instruction - `output`: Expected output that represents the ideal response ### Example ```json {"instruction": "以下の文章を要約してください。", "input": "人工知能(AI)は、人間の知能を模倣し、学習、推論、判断などを行うコンピュータシステムです。近年、機械学習や深層学習の発展により、画像認識、自然言語処理、ゲームなど様々な分野で人間に匹敵する、あるいは人間を超える性能を示しています。", "output": "AIは人間の知能を模倣するコンピュータシステムで、機械学習の発展により多くの分野で高い性能を示している。"} {"instruction": "次の英文を日本語に翻訳してください。", "input": "Artificial Intelligence is transforming the way we live and work.", "output": "人工知能は私たちの生活と仕事の仕方を変革しています。"}