--- library_name: transformers language: - id license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - kneth90/temp_snamol metrics: - wer model-index: - name: Whisper Medium Snamol results: [] --- # Whisper Medium Snamol This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 3.2500 - Wer: 385.7143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0 | 1000.0 | 1000 | 0.8347 | 31.4286 | | 0.0 | 2000.0 | 2000 | 2.7926 | 542.8571 | | 0.0 | 3000.0 | 3000 | 3.1362 | 631.4286 | | 0.0 | 4000.0 | 4000 | 3.3433 | 391.4286 | | 0.0 | 5000.0 | 5000 | 3.2500 | 385.7143 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0