--- library_name: transformers language: - id license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - kneth90/test_data_set_2 metrics: - wer model-index: - name: Whisper Small ID - Kenn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Test Dataset 2 type: kneth90/test_data_set_2 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 62.0253164556962 --- # Whisper Small ID - Kenn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Test Dataset 2 dataset. It achieves the following results on the evaluation set: - Loss: 1.5890 - Wer: 62.0253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0012 | 41.6667 | 1000 | 1.4854 | 64.1350 | | 0.0001 | 83.3333 | 2000 | 1.5412 | 62.2363 | | 0.0 | 125.0 | 3000 | 1.5755 | 62.0253 | | 0.0 | 166.6667 | 4000 | 1.5890 | 62.0253 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0