--- license: apache-2.0 tags: - generated_from_trainer datasets: - sst2 metrics: - accuracy model-index: - name: bert-base-uncased-sst2 results: - task: name: Text Classification type: text-classification dataset: name: sst2 type: sst2 config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.876 --- # bert-base-uncased-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the sst2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9312 - Accuracy: 0.876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.0209 | 0.836 | | No log | 2.0 | 250 | 1.0430 | 0.85 | | No log | 3.0 | 375 | 0.9312 | 0.876 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2