--- license: mit base_model: microsoft/git-base tags: - generated_from_trainer model-index: - name: git-base-pokemon results: [] --- #dataset used: polinaeterna/pokemon-blip-captions #code ```python from transformers import AutoProcessor, AutoModelForCausalLM import torch from PIL import Image import requests #Preprocess the dataset #Since the dataset has two modalities (image and text), the pre-processing pipeline will preprocess images and the captions. #To do so, load the processor class associated with the model you are about to fine-tune. from transformers import AutoProcessor checkpoint = "microsoft/git-base" processor = AutoProcessor.from_pretrained(checkpoint) device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "kr-manish/git-base-pokemon" # Replace with your actual username and model name model = AutoModelForCausalLM.from_pretrained(model_name).to(device) url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png" # Replace with the URL of your image image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt").to(device) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_caption) #a pink and purple pokemon character with big eyes ``` # git-base-pokemon This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5797 - Wer Score: 8.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 8.155 | 4.17 | 50 | 6.4318 | 25.1325 | | 5.3386 | 8.33 | 100 | 4.0782 | 18.6484 | | 3.3109 | 12.5 | 150 | 2.4303 | 9.4306 | | 2.0471 | 16.67 | 200 | 1.5797 | 8.9592 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2