--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - kul-speech-lab/CGN metrics: - wer model-index: - name: Whisper Large CGN results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: kul-speech-lab/CGN type: kul-speech-lab/CGN config: cgn-dev.py split: test metrics: - name: Wer type: wer value: 9.6159 --- # Whisper Large CGN This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the kul-speech-lab/CGN dataset. It achieves the following results on the evaluation set: - Loss: 0.23932012915611267 - Wer: 9.615871912312803 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - gradient_accumulation_steps: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2 Whisper large model finetuned on Flemish part of Corpus Gesproken Nederlands (CGN).