--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers instance_prompt: widget: [] --- # SDXL Fine-tuned with Leaf Images ## Model description These are LoRA adaption weights for the SDXL-base-1.0 model. ## Trigger keywords The following image were used during fine-tuning using the keyword \: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/sI_exTnLy6AtOFDX1-7eq.png) You should use to trigger the image generation. ## How to use Defining some helper functions: ```python from diffusers import DiffusionPipeline import torch import os from datetime import datetime from PIL import Image def generate_filename(base_name, extension=".png"): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") return f"{base_name}_{timestamp}{extension}" def save_image(image, directory, base_name="image_grid"): filename = generate_filename(base_name) file_path = os.path.join(directory, filename) image.save(file_path) print(f"Image saved as {file_path}") def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid", save_individual_files=False): if not os.path.exists(save_dir): os.makedirs(save_dir) assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) if save_individual_files: save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_') if save and save_dir: save_image(grid, save_dir, base_name) return grid ``` ### Text-to-image Model loading: ```python import torch from diffusers import DiffusionPipeline, AutoencoderKL repo_id='lamm-mit/SDXL-leaf-inspired' vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) base = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) base.load_lora_weights(repo_id) _ = base.to("cuda") refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=base.text_encoder_2, vae=base.vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) refiner.to("cuda") ``` Image generation: ```python prompt = "a vase that resembles a , high quality" num_samples = 4 num_rows = 4 guidance_scale = 15 all_images = [] for _ in range(num_rows): # Define how many steps and what % of steps to be run on each experts (80/20) n_steps = 25 high_noise_frac = 0.8 # run both experts image = base( prompt=prompt, num_inference_steps=n_steps, guidance_scale=guidance_scale, denoising_end=high_noise_frac,num_images_per_prompt=num_samples, output_type="latent", ).images image = refiner( prompt=prompt, num_inference_steps=n_steps, guidance_scale=guidance_scale, denoising_start=high_noise_frac,num_images_per_prompt=num_samples, image=image, ).images all_images.extend(image) grid = image_grid(all_images, num_rows, num_samples, save_individual_files=True, ) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/R7sr9kAwZjRk_80oMY54h.png) ## Fine-tuning script Download this script: [SDXL DreamBooth-LoRA_Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb) You need to create a local folder ```leaf_concept_dir_SDXL``` and add the leaf images (provided in this repository, see subfolder). The code will automatically download the training script. The training script can handle custom prompts associated with each image, which are generated using BLIP. For instance, for the images used here, they are: ```raw [', a close up of a green plant with a lot of small holes', ', a close up of a leaf with a small insect on it', ', a close up of a plant with a lot of green leaves', ', a close up of a green plant with a yellow light', ', a close up of a green plant with a white center', ', arafed leaf with a white line on the center', ', a close up of a leaf with a yellow light shining through it', ', arafed image of a green plant with a yellow cross'] ``` Training then proceeds as: ```python HF_username = 'lamm-mit' pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix" instance_prompt ="" instance_data_dir = "./leaf_concept_dir_SDXL/" val_prompt = "a vase that resembles a , high quality" val_epochs = 100 instance_output_dir="leaf_LoRA_SDXL_V10" #for checkpointing ``` Dataset generatio with custom per-image captions ```python import requests from transformers import AutoProcessor, BlipForConditionalGeneration import torch import glob from PIL import Image import json device = "cuda" if torch.cuda.is_available() else "cpu" # load the processor and the captioning model blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large",torch_dtype=torch.float16).to(device) # captioning utility def caption_images(input_image): inputs = blip_processor(images=input_image, return_tensors="pt").to(device, torch.float16) pixel_values = inputs.pixel_values generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption caption_prefix = f"{instance_prompt}, " with open(f'{instance_data_dir}metadata.jsonl', 'w') as outfile: for img in imgs_and_paths: caption = caption_prefix + caption_images(img[1]).split("\n")[0] entry = {"file_name":img[0].split("/")[-1], "prompt": caption} json.dump(entry, outfile) outfile.write('\n') ``` This produces a JSON file in the ```instance_data_dir``` directory: ```json {"file_name": "0.jpeg", "prompt": ", a close up of a green plant with a lot of small holes"} {"file_name": "1.jpeg", "prompt": ", a close up of a leaf with a small insect on it"} {"file_name": "2.jpeg", "prompt": ", a close up of a plant with a lot of green leaves"} {"file_name": "3.jpeg", "prompt": ", a close up of a leaf with a yellow substance in it"} {"file_name": "87.jpg", "prompt": ", a close up of a green plant with a yellow light"} {"file_name": "88.jpg", "prompt": ", a close up of a green plant with a white center"} {"file_name": "90.jpg", "prompt": ", arafed leaf with a white line on the center"} {"file_name": "91.jpg", "prompt": ", arafed image of a green leaf with a white spot"} {"file_name": "92.jpg", "prompt": ", a close up of a leaf with a yellow light shining through it"} {"file_name": "94.jpg", "prompt": ", arafed image of a green plant with a yellow cross"} ``` ```raw !accelerate launch train_dreambooth_lora_sdxl.py \ --pretrained_model_name_or_path="{pretrained_model_name_or_path}" \ --pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\ --dataset_name="{instance_data_dir}" \ --output_dir="{instance_output_dir}" \ --caption_column="prompt"\ --mixed_precision="fp16" \ --instance_prompt="{instance_prompt}" \ --validation_prompt="{val_prompt}" \ --validation_epochs="{val_epochs}" \ --resolution=1024 \ --train_batch_size=1 \ --gradient_accumulation_steps=3 \ --gradient_checkpointing \ --learning_rate=1e-4 \ --snr_gamma=5.0 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --mixed_precision="fp16" \ --use_8bit_adam \ --max_train_steps=500 \ --checkpointing_steps=500 \ --seed="0" ```