--- base_model: black-forest-labs/FLUX.1-dev library_name: diffusers license: apache-2.0 tags: - text-to-image - diffusers-training - diffusers - lora - FLUX.1-dev - science - materiomics - bio-inspired - materials science - generative AI for science instance_prompt: widget: [] --- # FLUX.1 [dev] Fine-tuned with Leaf Images FLUX.1 [dev] is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions. Install ```diffusers``` ```raw pip install -U diffusers ``` ## Model description These are LoRA adaption weights for the FLUX.1 [dev] model (```black-forest-labs/FLUX.1-dev```). The base model is, and you must first get access to it before loading this LoRA adapter. ## Trigger keywords The following images were used during fine-tuning using the keyword \: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/sI_exTnLy6AtOFDX1-7eq.png) Full dataset used for training: (lamm-mit/leaf-flux-images-and-captions) You should use \ to trigger this feature during image generation. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/#fileId=https://huggingface.co/lamm-mit/leaf-FLUX.1-dev/resolve/main/leaf-FLUX-inference-example.ipynb) ## How to use Defining some helper functions: ```python import os from datetime import datetime from PIL import Image def generate_filename(base_name, extension=".png"): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") return f"{base_name}_{timestamp}{extension}" def save_image(image, directory, base_name="image_grid"): filename = generate_filename(base_name) file_path = os.path.join(directory, filename) image.save(file_path) print(f"Image saved as {file_path}") def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid", save_individual_files=False): if not os.path.exists(save_dir): os.makedirs(save_dir) assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) if save_individual_files: save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_') if save and save_dir: save_image(grid, save_dir, base_name) return grid ``` ### Text-to-image Model loading: ```python from diffusers import FluxPipeline import torch repo_id = 'lamm-mit/leaf-L-FLUX.1-dev' pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, max_sequence_length=512, ) #pipeline.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Comment out if you have enough GPU VRAM adapter='leaf-flux.safetensors' #Step 4000, final step #adapter='leaf-flux-step-3000.safetensors' #Step 3000 #adapter='leaf-flux-step-3500.safetensors' #Step 3500 pipeline.load_lora_weights(repo_id, weight_name=adapter) pipeline=pipeline.to('cuda') ) pipeline=pipeline.to('cuda') ``` Image generation - Example #1: ```python prompt="""A cube that looks like a , with a wrap-around sign that says 'MATERIOMICS'. The cube is placed in a stunning mountain landscape with snow. The photo is taken with a Sony A1 camera, bokeh, during the golden hour. """ num_samples =1 num_rows = 1 n_steps=25 guidance_scale=5. all_images = [] for _ in range(num_rows): image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples, guidance_scale=guidance_scale, height=1024, width=1920,).images all_images.extend(image) grid = image_grid(all_images, num_rows, num_samples, save_individual_files=True, ) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Cwb4D8puqAL32ywRXGQCn.png)