--- language: - ymr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: leenag/Norm_Malasar_Luke results: [] --- # leenag/Norm_Malasar_Luke This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Spoken Bible Corpus: Malasar dataset. It achieves the following results on the evaluation set: - Loss: 0.5217 - Wer: 52.4656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1406 | 11.3636 | 250 | 0.2856 | 55.7339 | | 0.0084 | 22.7273 | 500 | 0.4196 | 53.8417 | | 0.0022 | 34.0909 | 750 | 0.4641 | 53.3257 | | 0.0005 | 45.4545 | 1000 | 0.4835 | 51.6628 | | 0.0002 | 56.8182 | 1250 | 0.5049 | 52.0642 | | 0.0002 | 68.1818 | 1500 | 0.5149 | 52.4656 | | 0.0002 | 79.5455 | 1750 | 0.5200 | 52.2936 | | 0.0002 | 90.9091 | 2000 | 0.5217 | 52.4656 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.16.0 - Tokenizers 0.19.1