--- pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers language: - ko --- # leewaay/kpf-bert-base-klueSTS-cross This is a [sentence-transformers](https://www.SBERT.net) model: A cross encoder trained with the pretrained [`jinmang2/kpfbert`](https://huggingface.co/jinmang2/kpfbert) model on the [KLUE STS dataset](https://huggingface.co/datasets/klue#sts) for sentence similarity tasks. It's specifically designed for direct evaluation of sentence pairs, making it highly effective for [Re-Ranking](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) and [Augmented SBERT](https://www.sbert.net/examples/training/data_augmentation/README.html) for data labeling tasks aimed at enhancing SBERT. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ```bash pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import CrossEncoder pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')] model = CrossEncoder('leewaay/kpf-bert-base-klueSTS-cross') scores = model.predict(pairs) print(scores) ``` ## Citing & Authors [Wonseok Lee](https://github.com/leewaay)