--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 07a1ff69-755e-4877-b0db-73b64d8cacb2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 32d61cd80543afbd_train_data.json ds_type: json field: question path: /workspace/input_data/32d61cd80543afbd_train_data.json type: completion debug: deepspeed: early_stopping_patience: eval_max_new_tokens: 128 eval_table_size: evals_per_epoch: 4 flash_attention: false fp16: fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: leixa/07a1ff69-755e-4877-b0db-73b64d8cacb2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: lora_model_dir: lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 2 mlflow_experiment_name: /tmp/32d61cd80543afbd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: 07a1ff69-755e-4877-b0db-73b64d8cacb2 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 07a1ff69-755e-4877-b0db-73b64d8cacb2 warmup_steps: 10 weight_decay: 0.01 xformers_attention: ```

# 07a1ff69-755e-4877-b0db-73b64d8cacb2 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0040 | 125 | nan | | 0.0 | 0.0081 | 250 | nan | | 0.0 | 0.0121 | 375 | nan | | 0.0 | 0.0162 | 500 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1