--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: a5dbb912-c802-4bb3-8bb1-e845a59d0d51 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f1ee80f481d77753_train_data.json ds_type: json format: custom path: /workspace/input_data/f1ee80f481d77753_train_data.json type: field_instruction: task field_output: website format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: leixa/a5dbb912-c802-4bb3-8bb1-e845a59d0d51 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/f1ee80f481d77753_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: a5dbb912-c802-4bb3-8bb1-e845a59d0d51 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a5dbb912-c802-4bb3-8bb1-e845a59d0d51 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# a5dbb912-c802-4bb3-8bb1-e845a59d0d51 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 177 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0170 | 1 | 8.9820 | | 3.804 | 0.2553 | 15 | 3.3025 | | 1.9887 | 0.5106 | 30 | 1.8288 | | 1.5354 | 0.7660 | 45 | 1.1299 | | 1.144 | 1.0213 | 60 | 0.8251 | | 0.5864 | 1.2766 | 75 | 0.8379 | | 0.6986 | 1.5319 | 90 | 0.6696 | | 0.6586 | 1.7872 | 105 | 0.6393 | | 0.3078 | 2.0426 | 120 | 0.5287 | | 0.2991 | 2.2979 | 135 | 0.5294 | | 0.3085 | 2.5532 | 150 | 0.5436 | | 0.2546 | 2.8085 | 165 | 0.5385 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1