--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: f46cc6fc-f320-4e60-88e9-6f617fd7b16a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-qwen1.5-moe bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22c6d07080dfffd0_train_data.json ds_type: json format: custom path: /workspace/input_data/22c6d07080dfffd0_train_data.json type: field_instruction: text field_output: label_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: leixa/f46cc6fc-f320-4e60-88e9-6f617fd7b16a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/22c6d07080dfffd0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: f46cc6fc-f320-4e60-88e9-6f617fd7b16a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f46cc6fc-f320-4e60-88e9-6f617fd7b16a warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# f46cc6fc-f320-4e60-88e9-6f617fd7b16a This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.4434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 11.9442 | | 11.642 | 0.0189 | 42 | 11.6242 | | 11.4712 | 0.0378 | 84 | 11.4749 | | 11.4696 | 0.0567 | 126 | 11.4634 | | 11.4574 | 0.0757 | 168 | 11.4591 | | 11.4622 | 0.0946 | 210 | 11.4558 | | 11.4469 | 0.1135 | 252 | 11.4504 | | 11.4435 | 0.1324 | 294 | 11.4483 | | 11.4324 | 0.1513 | 336 | 11.4461 | | 11.4376 | 0.1702 | 378 | 11.4444 | | 11.441 | 0.1891 | 420 | 11.4436 | | 11.4425 | 0.2080 | 462 | 11.4434 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1