--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - robust-speech-event - pt - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pt-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 24.29 - name: Test CER type: cer value: 7.51 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 55.72 - name: Test CER type: cer value: 21.82 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 47.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 50.78 --- # wav2vec2-large-xls-r-300m-pt-cv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3418 - Wer: 0.3581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.9035 | 0.2 | 100 | 4.2750 | 1.0 | | 3.3275 | 0.41 | 200 | 3.0334 | 1.0 | | 3.0016 | 0.61 | 300 | 2.9494 | 1.0 | | 2.1874 | 0.82 | 400 | 1.4355 | 0.8721 | | 1.09 | 1.02 | 500 | 0.9987 | 0.7165 | | 0.8251 | 1.22 | 600 | 0.7886 | 0.6406 | | 0.6927 | 1.43 | 700 | 0.6753 | 0.5801 | | 0.6143 | 1.63 | 800 | 0.6300 | 0.5509 | | 0.5451 | 1.84 | 900 | 0.5586 | 0.5156 | | 0.5003 | 2.04 | 1000 | 0.5493 | 0.5027 | | 0.3712 | 2.24 | 1100 | 0.5271 | 0.4872 | | 0.3486 | 2.45 | 1200 | 0.4953 | 0.4817 | | 0.3498 | 2.65 | 1300 | 0.4619 | 0.4538 | | 0.3112 | 2.86 | 1400 | 0.4570 | 0.4387 | | 0.3013 | 3.06 | 1500 | 0.4437 | 0.4147 | | 0.2136 | 3.27 | 1600 | 0.4176 | 0.4124 | | 0.2131 | 3.47 | 1700 | 0.4281 | 0.4194 | | 0.2099 | 3.67 | 1800 | 0.3864 | 0.3949 | | 0.1925 | 3.88 | 1900 | 0.3926 | 0.3913 | | 0.1709 | 4.08 | 2000 | 0.3764 | 0.3804 | | 0.1406 | 4.29 | 2100 | 0.3787 | 0.3742 | | 0.1342 | 4.49 | 2200 | 0.3645 | 0.3693 | | 0.1305 | 4.69 | 2300 | 0.3463 | 0.3625 | | 0.1298 | 4.9 | 2400 | 0.3418 | 0.3581 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3