--- license: mit base_model: neuralmind/bert-large-portuguese-cased tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: NER_harem_bert-large-portuguese-cased results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem config: default split: test args: default metrics: - name: Precision type: precision value: 0.7077353867693384 - name: Recall type: recall value: 0.7553231228987672 - name: F1 type: f1 value: 0.7307553306830503 - name: Accuracy type: accuracy value: 0.9551379448220711 --- # NER_harem_bert-large-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.2487 - Precision: 0.7077 - Recall: 0.7553 - F1: 0.7308 - Accuracy: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 16 | 0.6334 | 0.0163 | 0.0078 | 0.0106 | 0.8468 | | No log | 2.0 | 32 | 0.4537 | 0.2614 | 0.3112 | 0.2841 | 0.8826 | | No log | 3.0 | 48 | 0.3117 | 0.5262 | 0.5671 | 0.5458 | 0.9231 | | No log | 4.0 | 64 | 0.2421 | 0.5852 | 0.6631 | 0.6217 | 0.9385 | | No log | 5.0 | 80 | 0.2099 | 0.5950 | 0.6855 | 0.6370 | 0.9479 | | No log | 6.0 | 96 | 0.2153 | 0.6810 | 0.7464 | 0.7122 | 0.9551 | | No log | 7.0 | 112 | 0.2270 | 0.6894 | 0.7198 | 0.7043 | 0.9546 | | No log | 8.0 | 128 | 0.2213 | 0.6918 | 0.7437 | 0.7168 | 0.9554 | | No log | 9.0 | 144 | 0.2299 | 0.7021 | 0.7564 | 0.7283 | 0.9545 | | No log | 10.0 | 160 | 0.2256 | 0.7002 | 0.7591 | 0.7284 | 0.9562 | | No log | 11.0 | 176 | 0.2169 | 0.7100 | 0.7736 | 0.7404 | 0.9568 | | No log | 12.0 | 192 | 0.2266 | 0.6981 | 0.7740 | 0.7341 | 0.9571 | | No log | 13.0 | 208 | 0.2322 | 0.7093 | 0.7620 | 0.7347 | 0.9570 | | No log | 14.0 | 224 | 0.2487 | 0.7077 | 0.7553 | 0.7308 | 0.9551 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2