--- tags: - mteb model-index: - name: xiaobu-embedding results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 49.37874132528482 - type: cos_sim_spearman value: 54.84722470052176 - type: euclidean_pearson value: 53.0495882931575 - type: euclidean_spearman value: 54.847727301700665 - type: manhattan_pearson value: 53.0632140838278 - type: manhattan_spearman value: 54.8744258024692 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 48.15992903013723 - type: cos_sim_spearman value: 55.13198035464577 - type: euclidean_pearson value: 55.435876753245715 - type: euclidean_spearman value: 55.13215936702871 - type: manhattan_pearson value: 55.41429518223402 - type: manhattan_spearman value: 55.13363087679285 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.722 - type: f1 value: 45.039340641893205 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 63.517830355554224 - type: cos_sim_spearman value: 65.57007801018649 - type: euclidean_pearson value: 64.05153340906585 - type: euclidean_spearman value: 65.5696865661119 - type: manhattan_pearson value: 63.95710619755406 - type: manhattan_spearman value: 65.48565785379489 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 43.24046498507819 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 41.22618199372116 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 87.12213224673621 - type: mrr value: 89.57150793650794 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 87.57290061886421 - type: mrr value: 90.19202380952382 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.22 - type: map_at_10 value: 37.604 - type: map_at_100 value: 39.501 - type: map_at_1000 value: 39.614 - type: map_at_3 value: 33.378 - type: map_at_5 value: 35.774 - type: mrr_at_1 value: 38.385000000000005 - type: mrr_at_10 value: 46.487 - type: mrr_at_100 value: 47.504999999999995 - type: mrr_at_1000 value: 47.548 - type: mrr_at_3 value: 43.885999999999996 - type: mrr_at_5 value: 45.373000000000005 - type: ndcg_at_1 value: 38.385000000000005 - type: ndcg_at_10 value: 44.224999999999994 - type: ndcg_at_100 value: 51.637 - type: ndcg_at_1000 value: 53.55799999999999 - type: ndcg_at_3 value: 38.845 - type: ndcg_at_5 value: 41.163 - type: precision_at_1 value: 38.385000000000005 - type: precision_at_10 value: 9.812 - type: precision_at_100 value: 1.58 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 21.88 - type: precision_at_5 value: 15.974 - type: recall_at_1 value: 25.22 - type: recall_at_10 value: 54.897 - type: recall_at_100 value: 85.469 - type: recall_at_1000 value: 98.18599999999999 - type: recall_at_3 value: 38.815 - type: recall_at_5 value: 45.885 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 83.22309079975948 - type: cos_sim_ap value: 89.94833400328307 - type: cos_sim_f1 value: 84.39319055464031 - type: cos_sim_precision value: 79.5774647887324 - type: cos_sim_recall value: 89.82931961655366 - type: dot_accuracy value: 83.22309079975948 - type: dot_ap value: 89.95618559578415 - type: dot_f1 value: 84.41173239591345 - type: dot_precision value: 79.61044343141317 - type: dot_recall value: 89.82931961655366 - type: euclidean_accuracy value: 83.23511725796753 - type: euclidean_ap value: 89.94836342787318 - type: euclidean_f1 value: 84.40550133096718 - type: euclidean_precision value: 80.29120067524794 - type: euclidean_recall value: 88.9642272620996 - type: manhattan_accuracy value: 83.23511725796753 - type: manhattan_ap value: 89.9450103956978 - type: manhattan_f1 value: 84.44444444444444 - type: manhattan_precision value: 80.09647651006712 - type: manhattan_recall value: 89.29155950432546 - type: max_accuracy value: 83.23511725796753 - type: max_ap value: 89.95618559578415 - type: max_f1 value: 84.44444444444444 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 76.87 - type: map_at_10 value: 84.502 - type: map_at_100 value: 84.615 - type: map_at_1000 value: 84.617 - type: map_at_3 value: 83.127 - type: map_at_5 value: 83.99600000000001 - type: mrr_at_1 value: 77.02799999999999 - type: mrr_at_10 value: 84.487 - type: mrr_at_100 value: 84.59299999999999 - type: mrr_at_1000 value: 84.59400000000001 - type: mrr_at_3 value: 83.193 - type: mrr_at_5 value: 83.994 - type: ndcg_at_1 value: 77.134 - type: ndcg_at_10 value: 87.68599999999999 - type: ndcg_at_100 value: 88.17099999999999 - type: ndcg_at_1000 value: 88.21 - type: ndcg_at_3 value: 84.993 - type: ndcg_at_5 value: 86.519 - type: precision_at_1 value: 77.134 - type: precision_at_10 value: 9.841999999999999 - type: precision_at_100 value: 1.006 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 30.313000000000002 - type: precision_at_5 value: 18.945999999999998 - type: recall_at_1 value: 76.87 - type: recall_at_10 value: 97.418 - type: recall_at_100 value: 99.579 - type: recall_at_1000 value: 99.895 - type: recall_at_3 value: 90.227 - type: recall_at_5 value: 93.888 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.941 - type: map_at_10 value: 78.793 - type: map_at_100 value: 81.57799999999999 - type: map_at_1000 value: 81.626 - type: map_at_3 value: 54.749 - type: map_at_5 value: 69.16 - type: mrr_at_1 value: 90.45 - type: mrr_at_10 value: 93.406 - type: mrr_at_100 value: 93.453 - type: mrr_at_1000 value: 93.45700000000001 - type: mrr_at_3 value: 93.10000000000001 - type: mrr_at_5 value: 93.27499999999999 - type: ndcg_at_1 value: 90.45 - type: ndcg_at_10 value: 86.44500000000001 - type: ndcg_at_100 value: 89.28399999999999 - type: ndcg_at_1000 value: 89.739 - type: ndcg_at_3 value: 85.62100000000001 - type: ndcg_at_5 value: 84.441 - type: precision_at_1 value: 90.45 - type: precision_at_10 value: 41.19 - type: precision_at_100 value: 4.761 - type: precision_at_1000 value: 0.48700000000000004 - type: precision_at_3 value: 76.583 - type: precision_at_5 value: 64.68 - type: recall_at_1 value: 25.941 - type: recall_at_10 value: 87.443 - type: recall_at_100 value: 96.54 - type: recall_at_1000 value: 98.906 - type: recall_at_3 value: 56.947 - type: recall_at_5 value: 73.714 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 52.900000000000006 - type: map_at_10 value: 63.144 - type: map_at_100 value: 63.634 - type: map_at_1000 value: 63.644999999999996 - type: map_at_3 value: 60.817 - type: map_at_5 value: 62.202 - type: mrr_at_1 value: 52.900000000000006 - type: mrr_at_10 value: 63.144 - type: mrr_at_100 value: 63.634 - type: mrr_at_1000 value: 63.644999999999996 - type: mrr_at_3 value: 60.817 - type: mrr_at_5 value: 62.202 - type: ndcg_at_1 value: 52.900000000000006 - type: ndcg_at_10 value: 68.042 - type: ndcg_at_100 value: 70.417 - type: ndcg_at_1000 value: 70.722 - type: ndcg_at_3 value: 63.287000000000006 - type: ndcg_at_5 value: 65.77 - type: precision_at_1 value: 52.900000000000006 - type: precision_at_10 value: 8.34 - type: precision_at_100 value: 0.9450000000000001 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 23.467 - type: precision_at_5 value: 15.28 - type: recall_at_1 value: 52.900000000000006 - type: recall_at_10 value: 83.39999999999999 - type: recall_at_100 value: 94.5 - type: recall_at_1000 value: 96.89999999999999 - type: recall_at_3 value: 70.39999999999999 - type: recall_at_5 value: 76.4 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: None metrics: - type: accuracy value: 49.74220854174683 - type: f1 value: 38.01399980618159 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: None metrics: - type: accuracy value: 86.73545966228893 - type: ap value: 55.72394235169542 - type: f1 value: 81.58550390953492 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 69.96711977441642 - type: cos_sim_spearman value: 75.54747609685569 - type: euclidean_pearson value: 74.62663478056035 - type: euclidean_spearman value: 75.54761576699639 - type: manhattan_pearson value: 74.60983904582241 - type: manhattan_spearman value: 75.52758938061503 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 28.076927649720986 - type: mrr value: 26.98015873015873 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 65.58 - type: map_at_10 value: 74.763 - type: map_at_100 value: 75.077 - type: map_at_1000 value: 75.091 - type: map_at_3 value: 72.982 - type: map_at_5 value: 74.155 - type: mrr_at_1 value: 67.822 - type: mrr_at_10 value: 75.437 - type: mrr_at_100 value: 75.702 - type: mrr_at_1000 value: 75.715 - type: mrr_at_3 value: 73.91799999999999 - type: mrr_at_5 value: 74.909 - type: ndcg_at_1 value: 67.822 - type: ndcg_at_10 value: 78.472 - type: ndcg_at_100 value: 79.891 - type: ndcg_at_1000 value: 80.262 - type: ndcg_at_3 value: 75.138 - type: ndcg_at_5 value: 77.094 - type: precision_at_1 value: 67.822 - type: precision_at_10 value: 9.474 - type: precision_at_100 value: 1.019 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 28.281 - type: precision_at_5 value: 18.017 - type: recall_at_1 value: 65.58 - type: recall_at_10 value: 89.18599999999999 - type: recall_at_100 value: 95.64399999999999 - type: recall_at_1000 value: 98.541 - type: recall_at_3 value: 80.455 - type: recall_at_5 value: 85.063 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.86819098856758 - type: f1 value: 70.25369778283451 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.46738399462004 - type: f1 value: 75.02466838130249 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 53.300000000000004 - type: map_at_10 value: 60.072 - type: map_at_100 value: 60.618 - type: map_at_1000 value: 60.659 - type: map_at_3 value: 58.550000000000004 - type: map_at_5 value: 59.425 - type: mrr_at_1 value: 53.5 - type: mrr_at_10 value: 60.187999999999995 - type: mrr_at_100 value: 60.73499999999999 - type: mrr_at_1000 value: 60.775999999999996 - type: mrr_at_3 value: 58.667 - type: mrr_at_5 value: 59.541999999999994 - type: ndcg_at_1 value: 53.300000000000004 - type: ndcg_at_10 value: 63.376999999999995 - type: ndcg_at_100 value: 66.24600000000001 - type: ndcg_at_1000 value: 67.408 - type: ndcg_at_3 value: 60.211000000000006 - type: ndcg_at_5 value: 61.781 - type: precision_at_1 value: 53.300000000000004 - type: precision_at_10 value: 7.380000000000001 - type: precision_at_100 value: 0.877 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 21.667 - type: precision_at_5 value: 13.76 - type: recall_at_1 value: 53.300000000000004 - type: recall_at_10 value: 73.8 - type: recall_at_100 value: 87.7 - type: recall_at_1000 value: 97.0 - type: recall_at_3 value: 65.0 - type: recall_at_5 value: 68.8 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: None metrics: - type: accuracy value: 76.27666666666667 - type: f1 value: 76.31280038435165 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 78.72225230102869 - type: cos_sim_ap value: 80.63941899467723 - type: cos_sim_f1 value: 80.52190121155638 - type: cos_sim_precision value: 72.06005004170142 - type: cos_sim_recall value: 91.23548046462513 - type: dot_accuracy value: 78.72225230102869 - type: dot_ap value: 80.63913939812744 - type: dot_f1 value: 80.51948051948052 - type: dot_precision value: 71.7948717948718 - type: dot_recall value: 91.65786694825766 - type: euclidean_accuracy value: 78.72225230102869 - type: euclidean_ap value: 80.64403797436798 - type: euclidean_f1 value: 80.52190121155638 - type: euclidean_precision value: 72.06005004170142 - type: euclidean_recall value: 91.23548046462513 - type: manhattan_accuracy value: 78.18083378451544 - type: manhattan_ap value: 80.5241189302444 - type: manhattan_f1 value: 80.43478260869566 - type: manhattan_precision value: 72.7972626176219 - type: manhattan_recall value: 89.86272439281943 - type: max_accuracy value: 78.72225230102869 - type: max_ap value: 80.64403797436798 - type: max_f1 value: 80.52190121155638 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: None metrics: - type: accuracy value: 92.49000000000001 - type: ap value: 90.66330807324402 - type: f1 value: 92.48245049107115 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 33.6275431596535 - type: cos_sim_spearman value: 37.865700050451494 - type: euclidean_pearson value: 38.1050665279388 - type: euclidean_spearman value: 37.864125056066364 - type: manhattan_pearson value: 38.11206873232881 - type: manhattan_spearman value: 37.852977098473936 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 32.137955501231104 - type: cos_sim_spearman value: 33.68610910423116 - type: euclidean_pearson value: 32.155444753547926 - type: euclidean_spearman value: 33.685799252964124 - type: manhattan_pearson value: 32.14490855334317 - type: manhattan_spearman value: 33.656549820048554 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.63884916818661 - type: cos_sim_spearman value: 64.3217581571435 - type: euclidean_pearson value: 63.475760085926055 - type: euclidean_spearman value: 64.31638169371887 - type: manhattan_pearson value: 64.39677572604752 - type: manhattan_spearman value: 64.85585019406021 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 79.74698333415277 - type: cos_sim_spearman value: 81.1850043859317 - type: euclidean_pearson value: 80.94512578669881 - type: euclidean_spearman value: 81.18825478390181 - type: manhattan_pearson value: 80.88114336824758 - type: manhattan_spearman value: 81.12266715583868 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 66.59971552953814 - type: mrr value: 76.42177408088038 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 28.825 - type: map_at_10 value: 77.48899999999999 - type: map_at_100 value: 81.144 - type: map_at_1000 value: 81.216 - type: map_at_3 value: 55.435 - type: map_at_5 value: 67.496 - type: mrr_at_1 value: 91.377 - type: mrr_at_10 value: 94.062 - type: mrr_at_100 value: 94.122 - type: mrr_at_1000 value: 94.123 - type: mrr_at_3 value: 93.709 - type: mrr_at_5 value: 93.932 - type: ndcg_at_1 value: 91.377 - type: ndcg_at_10 value: 85.44800000000001 - type: ndcg_at_100 value: 89.11099999999999 - type: ndcg_at_1000 value: 89.752 - type: ndcg_at_3 value: 87.262 - type: ndcg_at_5 value: 85.668 - type: precision_at_1 value: 91.377 - type: precision_at_10 value: 41.525 - type: precision_at_100 value: 4.989 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 75.452 - type: precision_at_5 value: 62.785000000000004 - type: recall_at_1 value: 28.825 - type: recall_at_10 value: 84.202 - type: recall_at_100 value: 95.768 - type: recall_at_1000 value: 98.791 - type: recall_at_3 value: 57.284 - type: recall_at_5 value: 71.071 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: None metrics: - type: accuracy value: 52.160000000000004 - type: f1 value: 50.49492950548829 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 70.06019845009966 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 63.9370959228245 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 60.0 - type: map_at_10 value: 69.362 - type: map_at_100 value: 69.819 - type: map_at_1000 value: 69.833 - type: map_at_3 value: 67.783 - type: map_at_5 value: 68.71300000000001 - type: mrr_at_1 value: 60.0 - type: mrr_at_10 value: 69.362 - type: mrr_at_100 value: 69.819 - type: mrr_at_1000 value: 69.833 - type: mrr_at_3 value: 67.783 - type: mrr_at_5 value: 68.71300000000001 - type: ndcg_at_1 value: 60.0 - type: ndcg_at_10 value: 73.59400000000001 - type: ndcg_at_100 value: 75.734 - type: ndcg_at_1000 value: 76.049 - type: ndcg_at_3 value: 70.33 - type: ndcg_at_5 value: 72.033 - type: precision_at_1 value: 60.0 - type: precision_at_10 value: 8.67 - type: precision_at_100 value: 0.9650000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 25.900000000000002 - type: precision_at_5 value: 16.38 - type: recall_at_1 value: 60.0 - type: recall_at_10 value: 86.7 - type: recall_at_100 value: 96.5 - type: recall_at_1000 value: 98.9 - type: recall_at_3 value: 77.7 - type: recall_at_5 value: 81.89999999999999 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: None metrics: - type: accuracy value: 88.36 - type: ap value: 73.25144216855439 - type: f1 value: 86.75076261442027 --- # xiaobu-embedding 模型:基于GTE模型[1]多任务微调。 数据:闲聊类Query-Query、知识类Query-Doc、BGE开源Query-Doc[2];清洗正例,挖掘中等难度负例;累计6M(质量更重要)。 ## Usage (Sentence-Transformers) ``` pip install -U sentence-transformers ``` 相似度计算: ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('lier007/xiaobu-embedding') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` ## Evaluation 参考BGE中文CMTEB评估[2] ## Finetune 参考BGE微调模块[2] ## Reference 1. https://huggingface.co/thenlper/gte-large-zh 2. https://github.com/FlagOpen/FlagEmbedding