--- license: apache-2.0 base_model: EleutherAI/pythia-2.8b-deduped tags: - generated_from_trainer model-index: - name: PythiaChat-2.8B_v0.1 results: [] library_name: peft inference: false datasets: - linkanjarad/baize-chat-data --- # PythiaChat-2.8B_v0.1 This model is a fine-tuned version of [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) on the [Baize dataset](https://huggingface.co/datasets/linkanjarad/baize-chat-data/viewer/linkanjarad--baize-chat-data) with LoRA, trained for only 200+ steps for testing. This model is trained for "chat" style instruction following capabilities. # Sample Use Remember to mark the human messages with `[|Human|]` and AI messages with `[|AI]` at the start. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig peft_model_id = "linkanjarad/PythiaChat-2.8B_v0.1" model_id = "EleutherAI/pythia-2.8b-deduped" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) # you can add `load_in_4bit=True` for faster inference model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) model = model.to('cuda') model.eval() input_text = """The conversation between human and AI assistant. [|Human|] How do I open a file with python? [|AI|]""" # Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors='pt').to('cuda') len_input = len(input_ids[0]) # Generate text using the model with torch.no_grad(): output = model.generate(input_ids=input_ids, max_length=len_input+120, temperature=0.9, do_sample=True) # Decode the generated output generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` Example Output ``` The conversation between human and AI assistant. [|Human|] How do I open a file with python? [|AI|] To open a file with python, you can use the open function as follows: >>> with open('filename.txt', 'w') as f: ... f.write(data) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 80 - num_epochs: 1 ### Framework versions - PEFT 0.4.0 - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3