--- base_model: microsoft/codebert-base tags: - generated_from_trainer model-index: - name: CodeBertForCodeTrans results: [] --- # CodeBertForCodeTrans This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0006 ## Model description More information needed ## Driectly uses ```Python from transformers import AutoTokenizer, AutoModelForCausalLM additional_special_tokens = {'additional_special_tokens':['<|begin_of_java_code|>','<|end_of_java_code|>'\ ,'<|begin_of_c-sharp_code|>','<|end_of_c-sharp_code|>',\ '<|translate|>']} basemodel = "ljcnju/CodeBertForCodeTrans" tokenizer = AutoTokenizer.from_pretrained(basemodel) tokenizer.pad_token = tokenizer.eos_token config = AutoConfig.from_pretrained(basemodel) config.is_decoder = True model = AutoModelForCausalLM.from_pretrained(basemodel,config=config) device = torch.device("cuda") if torch.cuda.is_available() else torch.device('cpu') model.to(device) code = "public void serialize(LittleEndianOutput out) {out.writeShort(field_1_vcenter);}\n" prefix = additional_special_tokens['additional_special_tokens'][0] input_str = prefix + code +additional_special_tokens['additional_special_tokens'][1] + additional_special_tokens['additional_special_tokens'][2] input = tokenizer(input_str,return_tensors = "pt") output = model.generate(**input, max_length = 256) outputs_str = tokenizer.decode(output[0]) print(outputs_str) ``` More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 12354.0 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 5.7169 | 1.0 | 644 | 4.5075 | | 3.0571 | 2.0 | 1288 | 2.1423 | | 0.7391 | 3.0 | 1932 | 0.2866 | | 0.1028 | 4.0 | 2576 | 0.0219 | | 0.0158 | 5.0 | 3220 | 0.0047 | | 0.0065 | 6.0 | 3864 | 0.0024 | | 0.0036 | 7.0 | 4508 | 0.0020 | | 0.0028 | 8.0 | 5152 | 0.0014 | | 0.0018 | 9.0 | 5796 | 0.0010 | | 0.0023 | 10.0 | 6440 | 0.0017 | | 0.002 | 11.0 | 7084 | 0.0009 | | 0.002 | 12.0 | 7728 | 0.0012 | | 0.0015 | 13.0 | 8372 | 0.0020 | | 0.0028 | 14.0 | 9016 | 0.0010 | | 0.0015 | 15.0 | 9660 | 0.0007 | | 0.0027 | 16.0 | 10304 | 0.0015 | | 0.002 | 17.0 | 10948 | 0.0007 | | 0.0011 | 18.0 | 11592 | 0.0009 | | 0.0019 | 19.0 | 12236 | 0.0007 | | 0.0003 | 20.0 | 12880 | 0.0006 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0