--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: CodeBertForDefect-Detection results: [] --- # CodeBertForDefect-Detection This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9039 - Accuracy: 0.6435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 13112.4 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6483 | 1.0 | 1366 | 0.6494 | 0.5637 | | 0.6213 | 2.0 | 2732 | 0.5968 | 0.6380 | | 0.5927 | 3.0 | 4098 | 0.5767 | 0.6457 | | 0.5615 | 4.0 | 5464 | 0.5855 | 0.6669 | | 0.5271 | 5.0 | 6830 | 0.6677 | 0.6643 | | 0.4488 | 6.0 | 8196 | 0.7177 | 0.6237 | | 0.4576 | 7.0 | 9562 | 0.6643 | 0.6398 | | 0.45 | 8.0 | 10928 | 0.7414 | 0.6479 | | 0.4156 | 9.0 | 12294 | 0.9852 | 0.6519 | | 0.3362 | 10.0 | 13660 | 0.9039 | 0.6435 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0