--- license: apache-2.0 --- # Model Card for Model ID **bling-answer-tool** is a quantized version of BLING Tiny-Llama 1B, with 4_K_M GGUF quantization, providing a very fast, very small inference implementation for use on CPUs. [**bling-tiny-llama**](https://huggingface.co/llmware/bling-tiny-llama-v0) is a fact-based question-answering model, optimized for complex business documents. To pull the model via API: from huggingface_hub import snapshot_download snapshot_download("llmware/bling-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False) Load in your favorite GGUF inference engine, or try with llmware as follows: from llmware.models import ModelCatalog model = ModelCatalog().load_model("bling-answer-tool") response = model.inference(query, add_context=text_sample) Note: please review [**config.json**](https://huggingface.co/llmware/bling-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set. ### Model Description - **Developed by:** llmware - **Model type:** GGUF - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Quantized from model:** [llmware/dragon-mistral](https://huggingface.co/llmware/bling-tiny-llama-v0/) ## Model Card Contact Darren Oberst & llmware team