--- license: other base_model: apple/mobilevit-xx-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mobilevit-xx-small-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9507407407407408 --- # mobilevit-xx-small-finetuned-eurosat This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1926 - Accuracy: 0.9507 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5074 | 1.0 | 190 | 1.3433 | 0.7078 | | 0.9398 | 2.0 | 380 | 0.7177 | 0.85 | | 0.7035 | 3.0 | 570 | 0.4252 | 0.9070 | | 0.5435 | 4.0 | 760 | 0.3080 | 0.9281 | | 0.5007 | 5.0 | 950 | 0.2465 | 0.9389 | | 0.4533 | 6.0 | 1140 | 0.2291 | 0.9444 | | 0.3961 | 7.0 | 1330 | 0.1991 | 0.9496 | | 0.3949 | 8.0 | 1520 | 0.1926 | 0.9507 | | 0.4302 | 9.0 | 1710 | 0.1928 | 0.95 | | 0.4061 | 10.0 | 1900 | 0.1931 | 0.9463 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.1 - Tokenizers 0.13.3