--- license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-finetuned-cassava-leaf-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8640186915887851 --- # vit-large-patch16-224-finetuned-cassava-leaf-disease This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4007 - Accuracy: 0.8640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 800 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0134 | 0.99 | 24 | 0.5941 | 0.8042 | | 0.4785 | 1.98 | 48 | 0.4203 | 0.8570 | | 0.3874 | 2.97 | 72 | 0.4007 | 0.8640 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1