from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from huggingface_hub.constants import HF_HUB_CACHE from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel import torch import torch._dynamo import gc from PIL import Image as img from PIL.Image import Image from pipelines.models import TextToImageRequest from torch import Generator import time from diffusers import DiffusionPipeline from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only import torch import math from typing import Type, Dict, Any, Tuple, Callable, Optional, Union import ghanta import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import ( Attention, AttentionProcessor, FluxAttnProcessor2_0, FusedFluxAttnProcessor2_0, ) from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from diffusers.utils.import_utils import is_torch_npu_available from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed from diffusers.models.modeling_outputs import Transformer2DModelOutput import os os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" os.environ["TOKENIZERS_PARALLELISM"] = "True" torch._dynamo.config.suppress_errors = True class BasicQuantization: def __init__(self, bits=1): self.bits = bits self.qmin = -(2**(bits-1)) self.qmax = 2**(bits-1) - 1 def quantize_tensor(self, tensor): scale = (tensor.max() - tensor.min()) / (self.qmax - self.qmin) zero_point = self.qmin - torch.round(tensor.min() / scale) qtensor = torch.round(tensor / scale + zero_point) qtensor = torch.clamp(qtensor, self.qmin, self.qmax) return (qtensor - zero_point) * scale, scale, zero_point class ModelQuantization: def __init__(self, model, bits=7): self.model = model self.quant = BasicQuantization(bits) def quantize_model(self): for name, module in self.model.named_modules(): if isinstance(module, torch.nn.Linear): if hasattr(module, 'weightML'): quantized_weight, _, _ = self.quant.quantize_tensor(module.weight) module.weight = torch.nn.Parameter(quantized_weight) if hasattr(module, 'bias') and module.bias is not None: quantized_bias, _, _ = self.quant.quantize_tensor(module.bias) module.bias = torch.nn.Parameter(quantized_bias) def inicializar_generador(dispositivo: torch.device, respaldo: torch.Generator = None): if dispositivo.type == "cpu": return torch.Generator(device="cpu").set_state(torch.get_rng_state()) elif dispositivo.type == "cuda": return torch.Generator(device=dispositivo).set_state(torch.cuda.get_rng_state()) else: if respaldo is None: return inicializar_generador(torch.device("cpu")) else: return respaldo def calcular_fusion(x: torch.Tensor, info_tome: Dict[str, Any]) -> Tuple[Callable, ...]: alto_original, ancho_original = info_tome["size"] tokens_originales = alto_original * ancho_original submuestreo = int(math.ceil(math.sqrt(tokens_originales // x.shape[1]))) argumentos = info_tome["args"] if submuestreo <= argumentos["down"]: ancho = int(math.ceil(ancho_original / submuestreo)) alto = int(math.ceil(alto_original / submuestreo)) radio = int(x.shape[1] * argumentos["ratio"]) if argumentos["generator"] is None: argumentos["generator"] = inicializar_generador(x.device) elif argumentos["generator"].device != x.device: argumentos["generator"] = inicializar_generador(x.device, respaldo=argumentos["generator"]) usar_aleatoriedad = argumentos["rando"] fusion, desfusion = ghanta.emparejamiento_suave_aleatorio_2d( x, ancho, alto, argumentos["sx"], argumentos["sy"], radio, sin_aleatoriedad=not usar_aleatoriedad, generador=argumentos["generator"] ) else: fusion, desfusion = (hacer_nada, hacer_nada) fusion_a, desfusion_a = (fusion, desfusion) if argumentos["m1"] else (hacer_nada, hacer_nada) fusion_c, desfusion_c = (fusion, desfusion) if argumentos["m2"] else (hacer_nada, hacer_nada) fusion_m, desfusion_m = (fusion, desfusion) if argumentos["m3"] else (hacer_nada, hacer_nada) return fusion_a, fusion_c, fusion_m, desfusion_a, desfusion_c, desfusion_m from diffusers import FluxPipeline, FluxTransformer2DModel Pipeline = None torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True ckpt_id = "black-forest-labs/FLUX.1-schnell" ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" TinyVAE = "madebyollin/taef1" TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689" def empty_cache(): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() def load_pipeline() -> Pipeline: path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--flux.1-schnell-full1/snapshots/cb1b599b0d712b9aab2c4df3ad27b050a27ec146/transformer") transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16, use_safetensors=False) pipeline = FluxPipeline.from_pretrained(ckpt_id, revision=ckpt_revision, transformer=transformer, local_files_only=True, torch_dtype=torch.bfloat16,) pipeline.to("cuda") quantize_(pipeline.vae, int8_weight_only()) pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True) for _ in range(3): pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) return pipeline sample = None @torch.no_grad() def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: global sample if not sample: sample=1 empty_cache() image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] return image