# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VMistral model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "lt-asset/Waffle_VLM_WebSight": "https://huggingface.co/lt-asset/Waffle_VLM_WebSight/blob/main/configuration_vmistral.py", } class VMistralVisionConfig(PretrainedConfig): r""" """ model_type = "vmistral" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=32, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, web_attention_range=1, _flash_attn_2_enabled=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.web_attention_range = web_attention_range self._flash_attn_2_enabled = _flash_attn_2_enabled class VMistralPerceiverConfig(PretrainedConfig): r""" TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_resampler (`bool`, *optional*, defaults to `False`): Whether or not to use the resampler resampler_n_latents (`int`, *optional*, defaults to ): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). resampler_depth (`int`, *optional*, defaults to 6): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). resampler_n_heads (`int`, *optional*, defaults to 16): Number of heads in each Transformer block (for multi-headed self-attention). resampler_head_dim (`int`, *optional*, defaults to 96): Dimensionality of each head projection in the Transformer block. qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): Whether or not to use qk layer norms in perceiver """ model_type = "vmistral" def __init__( self, resampler_n_latents=64, resampler_depth=6, resampler_n_heads=16, resampler_head_dim=96, qk_layer_norms_perceiver=False, **kwargs, ): self.resampler_n_latents = resampler_n_latents self.resampler_depth = resampler_depth self.resampler_n_heads = resampler_n_heads self.resampler_head_dim = resampler_head_dim self.qk_layer_norms_perceiver = qk_layer_norms_perceiver super().__init__(**kwargs) class VMistralConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: additional_vocab_size (`int`, *optional`, defaults to 0): Additional vocabulary size of the model, typically for the special "" token. Additional vocab tokens are always trainable whereas regular vocab tokens can be frozen or not. vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MistralModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to `4096*32`): The maximum sequence length that this model might ever be used with. Mistral's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. alpha_initializer (`str`, *optional*, defaults to `"zeros"`): Initialization type for the alphas. alphas_initializer_range (`float`, *optional*, defaults to 0.0): The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. alpha_type (`str`, *optional*, defaults to `"float"`): Whether the gating alphas should be vectors or single floats. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*, defaults to 4096): Sliding window attention window size. If not specified, will default to `4096`. cross_layer_interval (`int`, *optional*, default to 1) Interval for cross attention (from text to image) layers. qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing text layers when `freeze_text_layers` is `True` freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): Exceptions to freezing vision layers when `freeze_vision_layers` is `True` use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict Example: ```python >>> from transformers import MistralModel, MistralConfig >>> # Initializing a Mistral 7B style configuration >>> configuration = MistralConfig() >>> # Initializing a model from the Mistral 7B style configuration >>> model = MistralModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vmistral" is_composition = False def __init__( self, additional_vocab_size=0, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, alpha_initializer="zeros", alphas_initializer_range=0.0, alpha_type="float", rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, # None in the original configuration_mistral, we set it to the unk_token_id bos_token_id=1, eos_token_id=2, image_token_id=32_001, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=4096, cross_layer_interval=1, qk_layer_norms=False, freeze_text_layers=True, freeze_text_module_exceptions=[], freeze_lm_head=False, freeze_vision_layers=True, freeze_vision_module_exceptions=[], attention_dropout=0.0, _flash_attn_2_enabled=True, use_resampler=False, vision_config=None, perceiver_config=None, **kwargs, ): self.vocab_size = vocab_size self.additional_vocab_size = additional_vocab_size self.image_token_id = image_token_id self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.alpha_initializer = alpha_initializer self.alphas_initializer_range = alphas_initializer_range self.alpha_type = alpha_type self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.cross_layer_interval = cross_layer_interval self.qk_layer_norms = qk_layer_norms self.freeze_vision_layers = freeze_vision_layers self.freeze_text_layers = freeze_text_layers self.freeze_text_module_exceptions = freeze_text_module_exceptions self.freeze_vision_module_exceptions = freeze_vision_module_exceptions self.freeze_lm_head = freeze_lm_head self.use_resampler = use_resampler self._flash_attn_2_enabled = _flash_attn_2_enabled self.attention_dropout = attention_dropout if perceiver_config is None: self.perceiver_config = VMistralPerceiverConfig() elif isinstance(perceiver_config, dict): self.perceiver_config = VMistralPerceiverConfig(**perceiver_config) elif isinstance(perceiver_config, VMistralPerceiverConfig): self.perceiver_config = perceiver_config if vision_config is None: self.vision_config = VMistralVisionConfig() elif isinstance(vision_config, dict): self.vision_config = VMistralVisionConfig(**vision_config) elif isinstance(vision_config, VMistralVisionConfig): self.vision_config = vision_config super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since # PretrainedConfig.from_dict first instantiates the class with the config dict and only then # updates the config object with `kwargs` from from_pretrained, so during the instantiation # of this object many attributes have default values and haven't yet been overridden. # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.