--- tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: xls-r-fleurs_zu-run3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Wer type: wer value: 0.5777717243257968 --- # xls-r-fleurs_zu-run3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (zu) dataset. It achieves the following results: - Wer (Validation): 57.19% - Wer (Test): 57.27% ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer (Train) | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1019 | 0.28 | 50 | 0.5804 | 0.5710 | | 0.1136 | 0.57 | 100 | 0.5462 | 0.5745 | | 0.1122 | 0.85 | 150 | 0.5401 | 0.5650 | | 0.097 | 1.14 | 200 | 0.5680 | 0.5598 | | 0.0938 | 1.42 | 250 | 0.5763 | 0.5603 | | 0.1004 | 1.7 | 300 | 0.5803 | 0.5778 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3