--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: "most of the results look perfectly healthy, but there are a few that are\ \ over thresholds, they are: \n\n " - text: 'so here''s my question: is it possible to have a very slow natural breathing rate and be healthy?' - text: 'never had an issue with reflux before, i eat very healthy....but gave it a go. ' - text: does every other person at their healthy weight range feel like this all the time? - text: penis overall just looks very unhealthy compared to last year and i have no idea what it could be and everywhere i’ve looked suggest it is penile cancer. metrics: - accuracy - precision - recall - f1 pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9411764705882353 name: Accuracy - type: precision value: 0.9411764705882353 name: Precision - type: recall value: 0.9411764705882353 name: Recall - type: f1 value: 0.9411764705882353 name: F1 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | lifestyle | | | disease | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.9412 | 0.9412 | 0.9412 | 0.9412 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("never had an issue with reflux before, i eat very healthy....but gave it a go. ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 12 | 25.8308 | 60 | | Label | Training Sample Count | |:----------|:----------------------| | disease | 30 | | lifestyle | 35 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 3786 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0061 | 1 | 0.2143 | - | | 0.3067 | 50 | 0.2243 | - | | 0.6135 | 100 | 0.0812 | - | | 0.9202 | 150 | 0.0019 | - | | 1.2270 | 200 | 0.0003 | - | | 1.5337 | 250 | 0.0002 | - | | 1.8405 | 300 | 0.0002 | - | | 2.1472 | 350 | 0.0001 | - | | 2.4540 | 400 | 0.0001 | - | | 2.7607 | 450 | 0.0001 | - | | 3.0675 | 500 | 0.0001 | - | | 3.3742 | 550 | 0.0001 | - | | 3.6810 | 600 | 0.0001 | - | | 3.9877 | 650 | 0.0001 | - | | 4.2945 | 700 | 0.0001 | - | | 4.6012 | 750 | 0.0001 | - | | 4.9080 | 800 | 0.0001 | - | | 5.2147 | 850 | 0.0001 | - | | 5.5215 | 900 | 0.0001 | - | | 5.8282 | 950 | 0.0001 | - | | 6.1350 | 1000 | 0.0 | - | | 6.4417 | 1050 | 0.0 | - | | 6.7485 | 1100 | 0.0 | - | | 7.0552 | 1150 | 0.0 | - | | 7.3620 | 1200 | 0.0 | - | | 7.6687 | 1250 | 0.0 | - | | 7.9755 | 1300 | 0.0 | - | | 8.2822 | 1350 | 0.0 | - | | 8.5890 | 1400 | 0.0 | - | | 8.8957 | 1450 | 0.0 | - | | 9.2025 | 1500 | 0.0 | - | | 9.5092 | 1550 | 0.0 | - | | 9.8160 | 1600 | 0.0 | - | ### Framework Versions - Python: 3.11.7 - SetFit: 1.1.1 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```